STAC3 stably interacts through its C1 domain with CaV1.1 in skeletal muscle triads

نویسندگان

  • Marta Campiglio
  • Bernhard E. Flucher
چکیده

The adaptor protein STAC3 is essential for skeletal muscle excitation-contraction (EC) coupling and a mutation in the STAC3 gene has been linked to a severe muscle disease, Native American myopathy (NAM). However the function of STAC3, its interaction partner, and the mode of interaction within the EC-coupling complex remained elusive. Here we demonstrate that STAC3 forms a stable interaction with the voltage-sensor of EC-coupling, CaV1.1, and that this interaction depends on a hitherto unidentified protein-protein binding pocket in the C1 domain of STAC3. While the NAM mutation does not affect the stability of the STAC3-CaV1.1 interaction, mutation of two crucial residues in the C1 binding pocket increases the turnover of STAC3 in skeletal muscle triads. Thus, the C1 domain of STAC3 is responsible for its stable incorporation into the CaV1.1 complex, whereas the SH3 domain containing the NAM mutation site may be involved in low-affinity functional interactions in EC-coupling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

STAC proteins associate to the IQ domain of CaV1.2 and inhibit calcium-dependent inactivation

The adaptor proteins STAC1, STAC2, and STAC3 represent a newly identified family of regulators of voltage-gated calcium channel (CaV) trafficking and function. The skeletal muscle isoform STAC3 is essential for excitation-contraction coupling and its mutation causes severe muscle disease. Recently, two distinct molecular domains in STAC3 were identified, necessary for its functional interaction...

متن کامل

Stac adaptor proteins regulate trafficking and function of muscle and neuronal L-type Ca channels

Excitation–contraction (EC) coupling in skeletal muscle depends upon trafficking of CaV1.1, the principal subunit of the dihydropyridine receptor (DHPR) (L-type Ca channel), to plasma membrane regions at which the DHPRs interact with type 1 ryanodine receptors (RyR1) in the sarcoplasmic reticulum. A distinctive feature of this trafficking is that CaV1.1 expresses poorly or not at all in mammali...

متن کامل

Stac adaptor proteins regulate trafficking and function of muscle and neuronal L-type Ca2+ channels.

Excitation-contraction (EC) coupling in skeletal muscle depends upon trafficking of CaV1.1, the principal subunit of the dihydropyridine receptor (DHPR) (L-type Ca(2+) channel), to plasma membrane regions at which the DHPRs interact with type 1 ryanodine receptors (RyR1) in the sarcoplasmic reticulum. A distinctive feature of this trafficking is that CaV1.1 expresses poorly or not at all in mam...

متن کامل

Stac3 Is a Novel Regulator of Skeletal Muscle Development in Mice

The goal of this study was to identify novel factors that mediate skeletal muscle development or function. We began the study by searching the gene expression databases for genes that have no known functions but are preferentially expressed in skeletal muscle. This search led to the identification of the Src homology three (SH3) domain and cysteine rich (C1) domain 3 (Stac3) gene. We experiment...

متن کامل

The junctional SR protein JP-45 affects the functional expression of the voltage-dependent Ca2+ channel Cav1.1.

JP-45, an integral protein of the junctional face membrane of the skeletal muscle sarcoplasmic reticulum (SR), colocalizes with its Ca2+ -release channel (the ryanodine receptor), and interacts with calsequestrin and the skeletal-muscle dihydropyridine receptor Cav1. We have identified the domains of JP-45 and the Cav1.1 involved in this interaction, and investigated the functional effect of JP...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017